Apr 15, 2014 01:00 PM ET
//
Trying to understand the ancient climate of our own planet is hard
enough, but to understand Mars’ climatic history, planetary scientists
have had to turn to a rather inventive method of climate forensics.
In case you didn’t get the memo, Mars used to be a lot
wetter than it is now; water flowed across its surface and vast lakes —
or even seas — used to cover huge swathes of land. But as the red
planet’s atmosphere was stripped away by the solar wind, global air
pressure plummeted, leaving Mars to freeze-dry. The liquid water froze
into the crust and sublimated while any atmospheric moisture was lost to
space.
Year One: Mars Rover Curiosity’s Key Discoveries
However, the biggest puzzle for scientists isn’t necessarily
why Mars is now so dry now, but how it was able to sustain liquid water
on its surface at all.
In a new study published in the journal Nature Geoscience,
Edwin Kite, a planetary geologist of the California Institute of
Technology (Caltech), tackled the problem by first devising a novel
means of measuring the thickness of the Martian atmosphere in the
planet’s past.
By measuring impact craters on the Martian surface, Kite was
able to gauge how thick the atmosphere was in Mars’ ancient past. Kite’s
team focused on the 3.6-billion-year-old Aeolis Dorsa region, measuring
319 craters.
As a meteorite blasts through a planetary atmosphere, the
thicker the atmosphere, the greater the drag. Therefore, the impact
energy of a falling space rock should relate to the thickness of the
atmosphere — and therefore its atmospheric pressure.
Fascinatingly, the team found that when the impact craters were
excavated, the Martian atmosphere must have had a pressure of 0.9 bar —
150 times higher that Mars’ current atmospheric pressure and
approximately equivalent to Earth’s current sea level pressure of 1 bar.
With an atmospheric pressure so high, suddenly it doesn’t seem like too
much of a stretch to think liquid water could have existed for extended
periods of time on the surface.
NEWS: Life’s a Beach: Rover Finds Mars Pebbles
But there’s a problem. Mars is located 50 percent further away
from the sun than Earth is, so the amount of solar energy it receives is
far too low to keep any water on its surface in a liquid state. To add
to the puzzling nature of Mars’ wet past, the young sun was radiating
even less energy in the past.
As a consequence, according to Kite, Mars would have needed to
have far higher atmospheric pressures to make liquid water exist on the
surface — a pressure of around 5 bar, or 5 times the Earth’s atmospheric
pressure at sea level.
“If Mars did not have a stable multi-bar atmosphere at the time
that the rivers were flowing — as suggested by our results—then a warm
and wet CO2/H2O greenhouse is ruled out, and long-term average
temperatures were most likely below freezing,” writes Kite and co. in
their study.
If Mars was so cold and atmospheric pressures had to have been
so high to keep water in a liquid state, how could Mars have
accommodated liquid water at all?
In a separate paper published in the same journal, Sanjoy Som
of NASA Ames Research Center outlined some possible mechanisms that may
have allowed Mars to maintain its liquid reservoir of water.
VIDEO: 6 Pieces Of Evidence For Water On Mars
Perhaps the Mars water is heavily laced in salts that lower the
freezing point of water, allowing water to flow at temperatures that
would have otherwise caused it to freeze. This theory has been bandied
around as a possible explanation for pools of water that may be
accumulating near the Martian surface. The Martian regolith is packed
with perchlorates, a highly toxic oxidizing agent that could create
briny pockets of liquid water.
Alternatively, periods of intense volcanic activity may have
released vast quantities of greenhouse gases, incubating any surface
water in a liquid state.
Som also points to “transient intervals” where cyclical changes
in Mars’ tilt created atmospheric conditions favorable for a thicker
atmosphere. Every 120,000 years, the red planet’s tilt undergoes
precession, which would have influenced the quantity of sunlight hitting
the poles. This cycle may have caused episodic freezing and thawing of
the Martian surface water.
Although this is a puzzle, the facts are laid out in front of
the Mars rovers working on the surface and orbiters that survey the
planet from hundreds of miles overhead: Mars used to be a lot wetter
than it is now. But how could the small world have sustained liquid
water for any period of time? That’s for planetary scientists to try to
work out.
Source: Physorg.
Nenhum comentário:
Postar um comentário